ΕΠΙΣΤΡΟΦΗ
Υλοποίηση μέσω γλώσσας Wolfram στο WLJS Notebook .
Μερικές Διαφορικές Εξισώσεις
Εξίσωση θερμότητας ($\partial_{t} u-\sigma \nabla^2 u=0$)
Με τρεις μεταβλητές
Clear["Global`*"]
u[x, y, t] = X[x] Y[y] T[t]
PDE = D[u[x, y, t], t] ==
D[u[x, y, t], {x, 2}] + D[u[x, y, t], {y, 2}]
PDE[[1]]/(X[x] Y[y] T[t])
PDE[[2]]/(X[x] Y[y] T[t]) // Expand
ODEt = T'[t] == -(k1^2 + k2^2) T[t]
ODEx = X''[x] == -k1^2 X[x]
ODEy = Y''[y] == -k2^2 Y[y]
solX = DSolve[ODEx, X[x], x]
(X[x] /. solX[[1]]) /. x -> 0
(X[x] /. solX[[1]]) /. x -> a
k1 = (n Pi)/a
solY = DSolve[ODEy, Y[y], y]
(Y[y] /. solY[[1]]) /. y -> 0
(Y[y] /. solY[[1]]) /. y -> b
k2 = (m Pi)/b
DSolve[ODEt, T[t], t]
Sin[ k1 x]
Sin[k2 y]
uTerm[x_, y_, t_, n_, m_] :=
E^(-((m^2 π^2 t)/b^2) - (n^2 π^2 t)/a^2) Sin[(n π x)/a] Sin[(m π y)/b]
uTerm[x,y,t,n,m]
Assuming[Element[n, Integers] && Element[m, Integers], Integrate[ Integrate[Sin[(n Pi x)/a]^2 Sin[(m Pi y)/b]^2, {x, 0, a}], {y, 0, b}]]
c[n_, m_] :=
Integrate[
Integrate[f[x, y] Sin[(n Pi x)/a] Sin[(m Pi y)/b], {x, 0, a}], {y, 0,
b}]/((a b)/4)
c[n, m]
uAp[x_, y_, t_, n0_, m0_] :=
Sum[c[n, m] uTerm[x, y, t, n, m], {n, 1, n0}, {m, 1, m0}]
uAp[x, y, t, 3, 4]
a = 1
b = 2
f[x_, y_] := Sin[3 Pi x] Sin[Pi y]
f[x, y]
c[n, m]
uAp[x, y, t, 5, 5] // FullSimplify
cTable = Table[{n, m, c[n, m]}, {n, 1, 10}, {m, 1, 10}];
TableForm[Flatten[cTable, 1],
TableHeadings -> {None, {"n", "m", "c[n,m]"}}]
uAp[x, y, t, 3, 2]
uSol[x_, y_, t_] := E^(-10 π^2 t) Sin[3 π x] Sin[π y]
uSol[x, y, t]
DensityPlot[uSol[x, y, 0], {x, 0, a}, {y, 0, b}, PlotPoints -> 100,
PlotLegends -> {"x","y"}]
DensityPlot[uSol[x, y, 0.3], {x, 0, a}, {y, 0, b}, PlotPoints -> 100,
PlotLegends -> {"x","y"}]
Static web notebook
Author kkoud
Created Thu 11 Sep 2025 10:37:01
Κώστας Κούδας | © 2025